Basic Electronic Toolkit for under \$40

- Multimeter http://www.mpja.com/prodinfo.asp?number=17191+TE
- Small <u>Wire cutters</u> <u>http://www.mpja.com/prodinfo.asp?number=16761+TL</u>
- Wire strippers http://www.mpja.com/prodinfo.asp?number=11715+TL
- Needle nose pliers <u>http://www.mpja.com/prodinfo.asp?number=15395+TL</u>
- Xacto knife
- <u>Soldering iron</u> and sponge <u>http://www.mpja.com/prodinfo.asp?number=15860+TL</u>
- Solder
- Solder sucker or desoldering braid <u>http://www.mpja.com/prodinfo.asp?number=0041+TL</u>
- Solderless <u>Breadboard</u> <u>http://www.mpja.com/prodinfo.asp?number=18103+TE</u>
- Assorted screw drivers

Also useful:

- Small vise <u>http://www.mpja.com/prodinfo.asp?number=17500+TL</u>
- Hot melt glue gun
- miscellaneous pliers

Temple University School of Communications and Theater

Sensor Safari Discussion

Doorbell (sensor)

Binary Sensors i.e. switches

- push button
- toggle
- key switch
- mercury tilt
- PIR motion

- magnetic
- thermal
- humidity
- air pressure...

Context is important

Resistive Sensors

sense a range of values

- Light level photocell
- Position flex sensors
- Tactile Pressure conductive foam
- Temperature thermistor

Advanced Sensors

- accelerometers
- distance ultrasonic, IR
- capacitive proximity
- microphones
- GPS ...

Arduino – a small, stand-alone computer

Digital Inputs or Outputs

Power Analog Inputs

ProtoShield

plugs into top of Arduino board

Assembly instructions for the other (Ladyada) version may be found at: http://www.ladyada.net/make/pshield/make.html

Temple University School of Communications and Theater

TellyMate Shield		
Displays	Sinple Graphs	 .
Progress Bar		68%
		Ganes?! \$\$\$ 19331 STR 18 DEX 11+ COH 84 MEM 83

Arduino Shields

Extend Arduino Capabilities

Example Shields:

- Xbee (wireless communications)
- Wave (audio playback, MP3)
- GPS & data logging
- Lithium Backpack (battery power)
- Motor Shield
- Button Shield
- Video (Atari quality)

Arduino Programming Steps

- Program can then run without PC
- Program restarts whenever Arduino power is applied or reset button is pressed
- Arduino can be powered by USB or external 7-12V supply

Arduino Programming Elements

- Comments: // or /* write stuff here */
- Variables
 - declared at beginning
 - used to store numeric values or text
- Functions
 - Setup (only executed once)
 - Loop (main part of program, continuously repeated)
- Digital I/O Pins are general purpose, configure them in Setup – pinMode(PinNumber, OUTPUT);
- Analog capable outputs (pins 9,10,11) should be set as outputs if needed
- Analog input pins (0-5) do not need to be configured

Arduino Programming Notes

- Every line has to end with a semicolon ;
- Curly Braces { } frame blocks of code
- Spelling and capitalization counts!
 - "digitalread(x)" is not the same as "digitalRead(x)"
- Program text is color coded to help you spot mistakes
- Appendix C in *Getting Started with Arduino* summarizes commands and the Arduino program structure.

Program Exercises

- From Arduino Examples
 - Blink LED (binary output)
 - Fade LED (analog output)
- Add switch to change fade rate (
 - binary input
 - if { } else { }
- Attach a photosensor (analog input)
- Adjust blink rate based on light level
- Send light level values to Mac using Serial.print
- FYI, example programs from the book can be found here: <u>http://makezine.com/getstartedarduino/</u>

Copy and and paste them into an Arduino window, modify if desired, and then upload them to the board.

Circuits for Binary Input

Circuit for Binary Input

What's a Microcontroller page 81

Circuit for Resistive Sensor

Temple University School of Communications and Theater

Connecting a Photocell as a Sensor

Temple University School of Communications and Theater

Circuit for Analog Input from an "Active Sensor"

Active Sensor

- Requires Power
- Generates an analog signal
- Generally 0-5V output
- Example: distance sensors

Temple University School of Communications and Theater

Sensors & Transducers <> Inputs & Outputs

- Binary Input (Switch)
- Binary Output (on or off)
- Analog Input (resistive sensors)
- Analog Output (PWM)

More on Diodes

- Resistors Follow Ohms law: V = IR
- Diodes DO NOT follow Ohms Law
- Diodes have a voltage drop across them (like a resistor)
- But diode voltage is (relatively) independent of current thru the diode

Temple University School of Communications and Theater

Choosing a Resistor for an LED

- LEDs have a characteristic voltage drop
- This Voltage is independent of current thru the LED
- Voltage varies based on LED type
- Voltage is in the range of 1.5 to 4V
- Desired current thru an LED is about 20mA
- Use Ohms law to find a resistance that will give you 20mA of current

Ohms Law: V=IR

$$V_{supply} - V_{LED}$$
 = (20mA) R

Example:

$$\frac{5V-2V}{20mA} = 100\Omega$$

Temple University School of Communications and Theater

Programming

- Conditional: If { } else { }
- Loop: For { }
- Input and Output
 - pinMode(pin#, input or output)
 - digitalWrite(pin#, HIGH or LOW)
 - digitalRead(pin#)
 - analogWrite(pin#, 0-255)
 - analogRead(pin#)
- Serial Communications
 - Serial.begin(baud rate)
 - Serial.println(number)

Temple University School of Communications and Theater

Assignments

- Build LED flasher kit
- Build protoshield
 - See earlier slide for example image of NKC electronics version
 - Assembly instructions for the Ladyada version may be found at: http://www.ladyada.net/make/pshield/make.html
- Read Chapter 5 and Appendix C in *Getting Started with Arduino*
- Extra Credit:

In class we worked with two Arduino programs, one (Blink) flashed an LED on and off every second, the other (Fading) made the brightness of an LED fade slowly in and out. Connect 2 LEDs to the Arduino and write a program (or modify the Blink or Fading program) to make one LED fade in and out and the other flash on and off.

